
Stephen Checkoway

Programming Abstractions
Lecture 32: Streams 2

Streams in Racket

These are already built-in so we don't need to write them

‣ (require racket/stream)

‣ (stream exp ...) ; Works like (list exp ...)

‣ (stream? v)

‣ (stream-cons head tail)

‣ (stream-first s)

‣ (stream-rest s)

‣ (stream-empty? s)

‣ empty-stream

‣ (stream-ref s idx)

And several others

Constructing an infinite-length stream

Simplest infinite-length stream: A stream of all zeros

(define all-zeros

 (stream-cons 0 all-zeros))

Note that we couldn't do this with a list

(define all-zeros-lst

 (cons 0 all-zeros-lst))

Error: all-zeros-lst: undefined;

 cannot reference an identifier before its definition

Why does 

(define all-zeros  
 (stream-cons 0 all-zeros))  

work when the list-version does not?

A. Streams are magic

B. Streams are lazy so the stream-cons doesn't run until all-zeros is

accessed for the first time

C. Streams are lazy so although the stream is constructed by stream-

cons, its "first" and "rest" part aren't evaluated until forced by stream-

first and stream-rest

D. Racket treats streams specially so it knows this construction is okay

4

(stream-length s) is a standard Racket stream function that returns the

length of the stream

What is the result of this code?

(define all-zeros  
 (stream-cons 0 all-zeros))  
(stream-length all-zeros)

A. 0

B. +inf.0 (which is how Racket spells positive infinity)

C. +nan.0 (which is how Racket spells Not a Number (NaN))

D. Infinite loop

E. Error
5

Constructing an infinite-length stream

Write a procedure which

‣ returns a stream constructed via stream-cons

‣ where the tail of the stream is a recursive call to the procedure

Call the procedure with the initial argument

(define (integers-from n)

 (stream-cons n (integers-from (add1 n))))

(define positive-integers (integers-from 0))

Primes as a stream

(define (prime? n) …) ; Returns #t if n is prime

(define (next-prime n)

 (cond [(prime? n) (stream-cons n (next-prime (+ n 2)))]

 [else (next-prime (+ n 2))]))

(define (primes)

 (stream-cons 2 (next-prime 3)))

Fibonacci numbers as a stream

Recall the Fibonacci numbers are defined by f0 = 0, f1 = 1 and fn = fn-1 + fn-2

(define (next-fib m n)

 (stream-cons m (next-fib n (+ m n))))

(define fibs (next-fib 0 1))

Building streams from streams

Let's write a procedure to add two streams together

‣ Use stream-cons to construct the new stream

‣ Use stream-first on each stream to get the heads

‣ Recurse on the tails via stream-rest

(define (stream-add s t)

 (cond [(stream-empty? s) empty-stream]

 [(stream-empty? t) empty-stream]

 [else

 (stream-cons (+ (stream-first s)

 (stream-first t))

 (stream-add (stream-rest s)

 (stream-rest t)))]))

Fibonacci numbers as a stream: take 2

f0 = 0, f1 = 1 and fn = fn-1 + fn-2

We can build our Fibonacci sequence directly from that definition (this is silly)

(define fibs

 (stream-cons

 0

 (stream-cons

 1

 (stream-add fibs (stream-rest fibs)))))

Write some infinite-length streams

‣ (constant-stream x)  

Returns a stream containing an infinite number of x 

(stream->list (stream-take (constant-stream 'ha) 10))  
=> '(ha ha ha ha ha ha ha ha ha ha)

‣ (define abc ...)  
Define an infinite-length stream (not a function) consisting of 'A, 'B, 'C

repeating in order. [Hint: (stream* ...) makes this short] 

(stream->list (stream-take abc 12))  
=> '(A B C A B C A B C A B C)

‣ (stream-cycle s)  

Returns an infinite-length stream consisting of the elements of s repeating in

order. E.g., the abc stream could be rewritten as  

(stream-cycle (stream 'A 'B 'C))

Write some stream procedures

‣ (stream-double s)  

Returns a stream containing each element of s twice  

(stream-double (stream 1 2 3)) => (stream 1 1 2 2 3 3)

‣ (stream-iterleave s t)  

Returns a stream that interleaves elements of s and t 

(stream-interleave (stream 1 2 3) '(a b c d))  
=> (stream 1 'a 2 'b 3 'c 'd)

Write more stream procedures

Write the following procedures that act like their list counterparts, but operate

lazily on streams; in particular, do not covert them to lists!

‣ (stream-take s num)  

Returns a stream containing the first num elements of s, make sure this is lazy

‣ (stream-drop s num)  

Returns a stream containing all of the elements of s in order except for the

first num

‣ (stream-filter f s)  
Returns a stream containing the elements x of s for which (f x) returns true

Multi-argument stream-map
(stream-map f s ...)

Racket has stream-map built-in but unlike its list counterparts, it only takes a

single stream

Generalize it to take any number of streams where the length of the returned

string is the minimum length of any of the stream arguments (i.e., return empty-

stream if any of the streams becomes empty); you'll want to use ormap, map

and apply

‣ (define (stream-map f . ss) …)

